
Introduction 

China has made great efforts to promote its low-carbon 
transformation process and realize its reduction targets of 
2020 and 2030. Since the 11th five-year period, carbon 

emission reduction has been an important constraint in 
economic and social development. “Action Plan 2012-
20 for Addressing Climate Change of Industrial Sectors,” 
“Light Industrial Sector Development Plan 2016-20,”  
and “National Agricultural Sustainable Development 
Planning 2016-30” have been the central arrangements 
for Chinese industrial sectors in recent years. The Chinese 
economy has entered into a “new-normal” stage in which 
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Abstract

Differentiated carbon dioxide emission reduction targets and optimizing industrial incentive policy is an 
important subject in China’s low-carbon economic transformation. With the application of the environmen-
tal input-output (EIO) method and the bi-proportional scaling updating schedule, the inter-industrial input-
output tables in 2017 are forecasted and then carbon dioxide emissions of 30 industrial sectors are simulated 
in seven scenarios. Based on these results, conclusions are:

1. Twenty-five high carbon dioxide emission sectors among 30 national sectors are divided into three 
types. Five sectors are whole-process high carbon dioxide emission type, 18 are conductive type, 
and two are apparent high type. 

2. Final demands keep the dominant role in pushing sectorial emissions growing, whether in total 
carbon dioxide emission intensity or emission quantities. Technical progress leads to emissions de-
clines in intensity and quantity. Moreover, special energy-saving technical progress will gradually 
exceed universal technical progress in reduction effects. Whole-process high carbon sectors are the 
best selection to gain favorable incentive policies to promote carbon dioxide emissions reduction. 
Apparent high carbon sectors are in last place. 

3. With incentive policies being improved, technical progress reduction effect is increasing. However, 
it is not enough to offset the driving effect from final demands growing in seven scenarios. More 
favorable incentives and investments should be allocated into high emission sectors, especially into 
the most sensitive ones.
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medium-high growth and economic structure adjustments 
are the significant characters. This raises many risks 
while also supplying opportunities for carbon emission 
reduction. In the 13th five-year period, technical progress 
and economic structure are given more focus than before. 
Therefore, how to optimize incentive policies among 
sectors is one core subject to stimulate emission reduction 
effects. Complex production correlations and energy 
consumption intensity differences among industrial sectors 
should be considered when policies are implemented. In 
this study, the environmental input-output model is used to 
consider these characters among all sectors in China. After 
estimating carbon dioxide emission effects in different 
scenarios, varied sector emission reduction suggestions 
are brought out to optimize reduction incentive policies.

Abundant literature has been published in recent years 
regarding China’s carbon dioxide emission reduction 
policies. Most research concerns national economic 
emission reduction analysis and regional or sectorial 
emission reduction fields. Concerning the regional emission 
reduction fields, many conclusions have been made. Zhu J. 
[1], Qu Chao [2], Lu C., and Zhang X. [3] have studied the 
carbon dioxide emissions situation in Hebei Province, 30 
other provinces, the western region, and Shaanxi Province, 
respectively, and supplied detailed reduction suggestions. 
In terms of sectorial emission reduction, Li Hong studied 
the industrial sector’s emission situation and found its 
scale and technical degree have inhibitory effects on its  
emission intensity in China [4]. Ren YS analyzed the  
carbon dioxide emissions of nine industrial sectors 
in Guangdong and made reduction effects analysis 
in different scenarios [5]. Lin Bo-qiang analyzed the 
reduction characteristics in the Chinese non-metallic 
mineral products and transport sectors [6-8]. Gao Biao 
estimated the agricultural sector’s carbon dioxide 
emission reduction potentials of Bai-cheng in China [9]. 
Wu QL applied the LEAP-power model to estimate the 
carbon dioxide reductions of the electric power sector 
in China in six scenarios up to 2030 [10]. Concerning 
the industrial sector’s emission reduction analysis, 
conclusions are mainly focused upon one sector or minor 
sectors’ reduction policies, and they paid little attention 
to the links in carbon dioxide emissions among sectors. 
Complex sectorial associations in production process and 
different emission intensity make sectorial links important 
in exploring optimal measures in China. When the goods 
of one industrial sector are produced, fossil energies are 
consumed and emissions are brought out. This kind of 
emission is defined as direct carbon. When the goods 
from another sector are input to this sector production, 
emissions are flowed to this sector correspondingly. 
Carbon dioxide flows among industrial sectors should 
be considered in exploring the optimal path to promote 
low-carbon transformation. Yang SS analyzed the sectors’ 
associations in emissions in secondary industries and 
evaluated the reduction effects based on the input-output 
model [11]. Thus, this study analyzes the carbon dioxide 
emission flows among all industrial sectors and simulates 
sectorial reduction scenarios.

Literature on the impacts of technological progress on 
carbon dioxide emissions mainly focuses on total reduction 
effect evaluation. Qiao estimated the technological 
progress’s influences on industrial sector emissions [12]. 
Xu Y.Z. analyzed the short- and long-term effects of 
environmental regulation policies on carbon emissions 
in China [13]. Wang Z.L. indicated the carbon reduction 
effects of eight industrial sectors in Beijing based on 
the grey relevancy method [14]. Zheng researched 
emission reduction of technological progress in China 
[15]. Johnston analyzed emission reduction effects of 
technology advances in Britain [16]. Many models have 
been developed to indicate emission reduction effects. Wu 
[11] and Chang [17] tried to analyze emission reduction 
effects in many scenarios based on LEAP model. Liu Xiao-
min, Liu, and Xu used the CGE model to estimate emission 
reductions in China [18-20]. Decomposition analysis 
methods are utilized to evaluate technological impact 
on carbon emissions [21-25]. Association among sectors 
in carbon emissions is not considered comprehensively 
through the above-noted methods. The input-output 
method was developed by Leontief in 1936 and widely 
used to analyze sectors’ production associations. Miller 
and Blair developed the input-output method for energy 
and environmental analysis [26]. Many researchers 
have used this method in energy and emissions analysis  
[27-32]. The environmentally extended input-output 
model has been used for final use-based environmental 
accounting [33]. Thus, this paper intends to indicate the 
reduction effects of 30 sectors through the input-output 
method in the 13th five-year period of China (13th-FYPiCh). 

The contributions of this paper may be summarized 
as follows: considering the carbon flows among 30 
sectors in China, the indirect and total carbon dioxide 
emissions are measured through sectorial input-output 
model. Furthermore, it is also used to simulate the various 
scenarios for reduction potential of China under different 
technological progress and economic development 
scenarios. The results can evaluate the future trend of 
China’s carbon dioxide emissions, as well as provide some 
general insights to the countermeasures aimed at energy-
saving and emission-reduction, which is beneficial for 
policy-making and realizing the 2020 and 2030 reduction 
targets. 

Material and Methods  

Environmental Input-Output Model

The input-output model is an analytical framework for 
analyzing production associations among industrial 
sectors in an economy. Now this model has been extended 
to many other fields, such as interregional flows of goods 
and services, energy flows, and environmental pollution 
associations with their activities. The environmental 
input-output model is applied to account for inter-sectorial 
associations in environmental analysis. In this study, the 
EIO model is constructed among all sectors in China to 
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measure carbon emission characters. Direct carbon dioxide 
emission intensity of sector j is defined as evaluating 
carbon emissions quantity per output. It is represented as 
DCIj and n sectors form DCI row vector.DCIj is calculated 
as follows in Eq. (1):

                     (1)

… where Ejk is the direct consumption caused by fuel k 
in sector j; k = 1, 2, L, 8 is the fuel type; and λk is the 
emission coefficient of fuel k (IPCC 2006).

TCI is also a row vector of total carbon dioxide 
emission intensity per final output. It contains its direct 
and indirect emissions. Indirect emissions happen 
accompanied with production input among sectors. Based 
on the input-output model, TCI is represented as Eq. (2) 
and total carbon emissions are obtained as in Eq. (3):

 
(2)

                      (3)

In Eq. (2), I is the identity matrix, A is the direct 
input coefficient matrix among sectors, and (I-A)-1 are 
defined as Leontief inverse matrix to represent total input 
coefficients among sectors. The input-output table issued 
by the China Statistical Bureau is of competitive type 
and the imported goods are shown in the final demand. 
Intermediate input goods include two parts: domestic and 
imported goods. Thus, imported goods should be excluded 
from input coefficient matrix A. Otherwise, TCI will be 
seriously overestimated. Based on the handling method 
of the Chinese Input-Output Association [34], a diagonal 
matrix m̂   is formed to estimate ratios of imported goods 
in proportion to total goods. In sector i, imported demands 
proportion mi can be calculated using Eq. (4):

                            (4)

A is adjusted to as in Eq. (5) and, correspondingly, TCI 
is repeated to calculate. 

ˆ( )A I m A′ = − ⋅                        (5)

Input-output Data Updating Method

The EIO model is used to analyze carbon dioxide 
emission reduction effects of sectors on the premise of 
input-output table forecast in the 13th-FYPiCh. Hence, the 
forthcoming input-output table is of 2017, to be released by 
the China Statistical Bureau in approximately 2020. Many 
researchers have devoted their efforts to updating input-
output table information on some reasonable assumptions. 
Gao Minxue and Xu Jian have used the bio-proportional 

scaling method (RAS) to update the input-output tables 
and conclude that it has good statistical properties [26]. 
The main steps are:
1. Assumptions and primary forecast. First, prices 

remain unchanged from 2012 to 2017. Then final 
goods and added values data in the second and third 
quadrants are forecast. It is assumed that total outputs, 
final outputs, and values added of sectors keep the 
same speed during 2012-17 as during 2007-12. Under 
the two assumptions, total outputs, final outputs, and 
values added of 30 sectors in 2017 are forecast and 
represented by vectors X ̆ , Y ̆ , and V ̆ . 

2. Row adjustment. The input coefficient matrix in 2012 
and 2017 is represented by A0 and A˘, respectively.  
is a diagonal matrix transformed from X˘ and

. If , this means that no 
change happens and no row adjustment is needed. 
Otherwise, A0 should be revised. Revised matrix  
is shown in Eq. (6). Revised flow matrix in first 
quadrant is .

3. Column adjustment. Based on IFX in the above, 
column sum vector MI is calculated by the sum of each 
column in IFX . Intermediate input column vector SMI
in 2017 is . Thus the column-revised matrix Ŝ(1)
is calculated as in Eq. (6) and .

        (6)

3. Similarly, after iterations m times, the revised 
coefficients tend to converge, and when errors ratios 
are kept within acceptable ranges, iterations end. Final 
revised row matrix R̂ and column matrix Ŝ are obtained 
as in Eq. (7), and final input coefficient matrix is as in 
Eq. (8):

ˆ̂̂̂ˆ̂̂̂R=R(m) R(m-1) R(1); S=S(m) S(m-1) S(1)× ×      (7)

                          (8)

Carbon Reduction Scenarios Design
 
From the previous literature, factors affecting carbon 

dioxide emissions mainly include economic growth rate, 
industrial structure, energy consumption intensity, and type 
structure. According to Eq. (2), the faster the economic 
growth rate, the faster total carbon emissions grow under 
the assumption that total carbon dioxide emission intensity 
is constant. That is, economic growth promotes increasing 
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emissions. On the other hand, carbon dioxide emission 
reduction should own to a decrease of total emission 
intensity. The more the total emission intensity decreases, 
the greater the emission reduction effects. Based on Eqs. 
(1-3), energy consumption intensity, energy type structure, 
and sectors demand structure influence total carbon dioxide 
emission intensity. In input-output analysis framework, 
Leontief inverse matrix (I-A)-1 represents inter-sector 
associations in production process, and its change reflects 
overall technical progress. In this study, (I-A)-1 is used to 
represent universal technical change in China. Based on 
Eq. (1), the change of energy consumption intensity and 
energy type structure can be reflected by direct emission 
intensity vector. Decrease of DCI indicates the special 
technical progress in energy-saving fields, and we define 
its special energy-saving technical progress. An indicator 
that influences total carbon dioxide emissions of a sector 
is its final demand. Out of respect for all sectors, final 
demands growth influences total emissions among sectors. 
Above all, total carbon emission changes result from three 
factors: universal technical progress, special energy-saving 
technical progress, and final demands change. Scenarios 
in the 13th-FYPiCh are designed from these three aspects.

In China, technical innovation is gaining more and 
more attention in society. Especially in the 13th-FYPiCh, 
green development has been one of the five development 
concepts in central government. The 13th-FYPiCh National 
Science and Technology Innovation Planning announced 
in 2016 gives detailed information on technical progress. 
Now, the government will give more favorable supporting 
policies to promote technical progress in sectors. On 
conditions of input-output table updating as noted earlier, 
final demand growth and universal technical progress 
are represented through Y and A in the five-year period. 
As a result, scenarios are conducted with DCI changes 
(see in Table 3). Three types of scenarios are as follows: 
NTES, CTES, and NTES. NTES is a scenario in which 
no special technical progress happens in all sectors; CTES 
is one with consistent special technical progress among 
all sectors, and DTES is considered differentiated special 
technical progress in 13th-FYPiCh (Table 1). In CTES, 
three sub-scenarios are categorized according to DCI 
decrease ratios: T10%, T20%, and T30%. In NTES, all 
sectors are categorized into four types: low-carbon sectors, 

whole-process high-carbon sectors, conductive high-
carbon sectors, and apparent high-carbon sectors. Sub-
scenarios in NTES are conducted when the three high-
carbon sectors are given more favorable incentive policies 
and direct carbon intensity decreases by 30%. In total, 
seven scenarios are considered in this study as follows in 
Table 1. In each scenario, ΔCt is carbon dioxide emission 
change vector of all sectors. It is decomposed into three 
parts: ΔCY, ΔCA, and ΔCI, which represent final demand 
effects, universal technical progress effect, and special 
energy-saving technical progress effect, respectively. The 
calculations are as follows in Eq. (11).

 

              (9)

Results and Discussion

Carbon Dioxide Emission Situations of 30 Sectors 
in China

The main economic data are from China input-output 
table 2012 and it reflects current sectorial economic and 
technical level information [35]. Energy consumption 
information is from the China Energy Statistical Yearbook 
2013 [36]. Forty-two sectors are merged into 30 sectors  
in accordance with sector classifications in industrial 
energy consumption information (Table 1). The carbon 
dioxide emission coefficients of each fuel type are based 
on 2006 guidelines from the Intergovernmental Panel 
on Climate Change (IPCC 2006). Total carbon dioxide 
emissions of 30 sectors are also estimated with Eqs. (1-3). 
In 2012 total emissions of 30 sectors were 3,042 million 
tons. In direct emissions, the three highest-contributing 
sectors are electric power production and supply,  
petroleum processing and coking, and ferrous and 
nonferrous metal processing. From the aspect of total 
carbon dioxide emissions, the most contributory sectors 
are construction, other services, and transportation 
equipment. 

With Eqs. (1-2), DCI and TCI are calculated (Fig. 1) 
in 30 sectors. Their intensities varied in direct and total 
intensities. Compared with direct and total emission 
intensity, sectors are categorized into four types: low 
carbon type, whole-process high type, conductive high 
type, and apparent high type. If a sector has higher direct 
and total intensities, it is defined as a whole process type. A 
sector with lower direct intensity and higher total intensity 
is categorized into conductive high type. Conductive 
high sectors are characterized as lots of carbon dioxide 
emissions flowing into these types, accompanied with 
goods from other sectors. If it is higher direct intensity and 
lower total intensity, it is of apparent type. The apparent 
high sectors may be a source of carbon dioxide emission 
flows. And if two intensities of a sector are both lower, it 
is low carbon type. From Fig. 1, five sectors (1, 6, 23, 29, 

Fig. 1. Carbon dioxide emission intensities of 30 sectors in 2012 
(unit: tons per 104 yuan).



2845Scenario Simulation of the Industrial...

and 30) are low carbon type; such sectors as 2, 11, 13, 14, 
and 24 are whole-process high type; two sectors (3 and 25)  
are apparent high type; and the other 18 sectors are divided 
into conductive high type. Different kinds of sectors may 
have different reduction effects and need differentiated 
incentive policies.

Input-Output Data in 2017 Updating Results

According to the RAS updating schedule noted earlier, 
iterations are conducted. In each iteration relative error 
sum squares of 30 sectors are calculated. When iterations 
rise, errors decrease. After eight iterations, errors tend to 

No. Sector category No. Sector category

1 Agriculture 16 General equipment manufacturing 

2 Coal mining and dressing 17 Special equipment manufacturing

3 Petroleum and natural gas extraction 18 Transportation equipment

4 Ferrous, nonferrous mining and dressing 19 Electrical equipment and machinery

5 nonmetal and other mining and dressing 20 Electric, communication equipment

6 Food production, tobacco processing 21 Instrument equipment

7 Textile 22 Other manufacturing

8 Garments and related products 23 Waste disposals 

9 Timber processing and furniture 24 Electric power production and supply

10 Printing, cultural and sports articles 25 Gas production and supply

11 Petroleum processing and coking 26 Water production and supply

12 Chemical materials and products 27 Construction

13 nonmetal mineral products 28 Transport, storage, postal services

14 Ferrous, nonferrous metals processing 29 Wholesale, retails, hotels, and catering 

15 Metal products 30 other service activities

Table 1. Sector classification in EIO analysis.

Sector No. iiR̂ iiŜ Sector No. iiR̂ iiŜ

1 0.9489 0.9591 16 0.6834 1.0889

2 1.7661 0.7134 17 1.1451 1.0252

3 1.1351 0.9500 18 0.5641 1.1869

4 1.1547 0.8671 19 0.9920 0.9990

5 0.9021 0.8477 20 0.9401 0.9914

6 1.1262 0.9719 21 0.9070 1.0317

7 0.9869 1.0047 22 0.2660 1.0220

8 0.6645 1.0415 23 0.6625 1.1687

9 0.9861 1.0102 24 0.9365 0.8604

10 0.7642 1.0576 25 0.7232 0.8600

11 0.9599 0.8567 26 0.4230 0.9414

12 1.0130 0.9664 27 1.5666 0.8775

13 1.0560 0.9626 28 1.0116 1.0790

14 0.9821 0.9742 29 1.1716 0.5776

15 0.9764 1.0064 30 1.4206 0.8921

Table 2. Coefficients of 30 sectors in updating IO tables.
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be stable and iterations end. In the end, total error ratio is 
4.36%. The final adjusting coefficients of 30 sectors are 
listed in Table 2.

Total Carbon Intensity Reduction Effects 
of All Scenarios

Based on Eqs. (1-6) and RAS results, the total carbon 
dioxide emission intensity in 2017 of all scenarios can be 
estimated. Table 4 is the TCI results in seven scenarios. 
The total emission intensity decreased with DCI decreases 
from 0% to 30% in the first four scenarios. Scenario T0% 
is the TCI results when DCI in 2017 remains the same as 
in 2012. Scenarios T10%, T20%, and T30% are simulation 
results of TCI when DCI decreases by 10%, 20%, and 
30% in comparison with DCI in 2012. The last three 
scenarios are trying to consider the TCI changes when 
special energy-saving technical progress happens in the 
three types of high carbon sectors, respectively. WH30% 
in Table 4 is the TCI in 2017 if only the five whole-process 

high-type sectors enjoy favorable incentive policies to 
reduce their emission technology among 30 sectors and, 
correspondingly, their direct emission intensity is reduced 
by 30%. CH30% is the TCI in 2017 when 18 conductive 
sectors reduced direct intensity by 30%. AH30% is the 
TCI in 2017 when two apparent high-carbon sectors 
reduce direct emission intensity by 30%. TCI in WH30%, 
CH30%, and AH30% varies differently among 30 sectors. 
The three scenarios are being considered as reduction 
effects when few sectors are given favorable incentive 
policies for resources, and investments are limited and 
they should be allocated reasonably. T30% is the TCI 
reduction effect when all sectors enjoy indiscriminative 
incentive policies among 30 sectors. A comparison is 
trying to evaluate three high-carbon type sectors with 
T30%.

The change ratio of TCI in the first four scenarios 
is shown in Fig. 2. TCI of all sectors decreases with 
DCI reduction more and more, except sector 23 in the 
T0% scenario. Moreover, total carbon dioxide emission 
intensities of 30 sectors decrease at different ratios. In 
T0%, universal technical progress and final demands 

Fig. 2. TCI change ratios of 30 sectors in NTES and CTES  
(unit: %).

Fig. 3. TCI change ratios of three scenarios in DTES, compared 
with T30% scenarios (unit: %).

Scenarios Descriptions

NTES T0% Carbon emissions are driven by universal technical progress and final demands growth; no special 
technical progress in energy-saving fields happens in 30 sectors.

CTES

T10% Carbon emissions are driven by universal technical progress and final demands growth; special 
technical progress in energy-saving fields makes DCI decrease by 10% in 30 sectors.

T20% Carbon emissions are driven by universal technical progress and final demands growth; special 
technical progress in energy-saving fields makes DCI decrease by 20% in 30 sectors.

T30% Carbon emissions are driven by universal technical progress and final demands growth; special 
technical progress in energy-saving fields makes DCI decrease by 30% in 30 sectors.

DTES

WH30% Carbon emissions are driven by universal technical progress and final demands growth; special 
technical progress only makes whole-process high sectors direct carbon intensity decrease by 30%.

CH30% Carbon emissions are driven by universal technical progress and final demands growth; special 
technical progress only makes conductive high sectors direct carbon intensity decrease by 30%.

AH30% Carbon emissions are driven by universal technical progress and final demands growth; special 
technical progress only makes apparent high sectors direct carbon intensity decrease by 30%.

Table 3. Scenarios and their descriptions.
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commonly drive carbon dioxide emission changes. In the 
T10%, 20%, and 30% scenarios, special energy-saving, 
universal technical progress and final demands together 
lead to sectorial emissions changes. In all four scenarios, 
TCI of 30 sectors varied at different ratios. Such sectors  
as 23 and 28 decrease at the lowest velocity in total 
emission intensity. Except for Garment and the related 
products and waste disposal sectors, 28 sectors decrease 
significantly. 

When discriminated incentive policies are implemented 
in three high-emission-type sectors, respectively, each 
type sector gained differentiated TCI reduction effects. 

Compared with TCI reduction effect in the T30% scena-
rio (Fig. 3), TCI reduction effect in the WH30% scenario 
is most satisfactory among the three. Scenario CH30% 
is in the second order in reduction effects and AH30% 
scenario is the least. Whole-process high-emission-
type sectors include five sectors: 2, 11, 13, 14, and 24. 
Conductive high-emission-type sectors include 18 sectors 
and apparent high-type includes two sectors. Thus the 
whole-process high-emission-type sectors are the most 
economical and should be in the first place to be given 
incentive policies.

Sectors T0% T10% T20% T30% WH30% CH30% AH30%

1 0.2336 0.1892 0.1682 0.1472 0.1701 0.1992 0.2098

2 1.1221 0.8944 0.7950 0.6956 0.7042 0.9868 0.9935

3 0.5590 0.4399 0.3910 0.3422 0.4010 0.4793 0.4405

4 0.6950 0.4886 0.4343 0.3800 0.4050 0.5202 0.5421

5 0.7043 0.5107 0.4540 0.3972 0.4480 0.5192 0.5667

6 0.2719 0.2199 0.1955 0.1710 0.2002 0.2318 0.2440

7 0.4248 0.3501 0.3112 0.2723 0.3144 0.3522 0.3885

8 0.3483 0.2845 0.2529 0.2213 0.2544 0.2880 0.3157

9 0.4406 0.3611 0.3210 0.2809 0.3129 0.3735 0.4007

10 0.5814 0.4819 0.4284 0.3748 0.4346 0.4793 0.5349

11 1.8664 1.5798 1.4043 1.2287 1.2448 1.7489 1.7466

12 0.8496 0.6988 0.6211 0.5435 0.6321 0.6925 0.7749

13 1.0880 0.9048 0.8042 0.7037 0.7277 0.9843 1.0044

14 1.2569 1.0437 0.9277 0.8118 0.8261 1.1478 1.1588

15 0.8245 0.6674 0.5932 0.5191 0.5421 0.7213 0.7408

16 0.6035 0.5053 0.4492 0.3930 0.4201 0.5375 0.5608

17 0.5723 0.4739 0.4213 0.3686 0.3931 0.5051 0.5260

18 0.5157 0.4319 0.3840 0.3360 0.3623 0.4568 0.4794

19 0.6746 0.5477 0.4868 0.4260 0.4517 0.5859 0.6079

20 0.3447 0.2761 0.2454 0.2148 0.2341 0.2903 0.3064

21 0.4106 0.3503 0.3114 0.2724 0.2934 0.3712 0.3887

22 0.6601 0.5488 0.4878 0.4268 0.4838 0.5566 0.6090

23 0.1638 0.1556 0.1383 0.1210 0.1320 0.1653 0.1727

24 3.4094 2.7917 2.4815 2.1713 2.1808 3.0948 3.1010

25 0.6058 0.4486 0.3987 0.3489 0.4298 0.4922 0.4247

26 0.7402 0.5434 0.4830 0.4226 0.4436 0.5855 0.6033

27 0.6489 0.4839 0.4301 0.3763 0.3972 0.5196 0.5370

28 0.7787 0.6868 0.6104 0.5341 0.6399 0.6625 0.7607

29 0.1689 0.0932 0.0828 0.0725 0.0853 0.0990 0.1034

30 0.2303 0.1760 0.1564 0.1369 0.1546 0.1848 0.1951

Table 4. Total carbon dioxide emission intensity in seven scenarios (unit: tons per 104 yuan).
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Total Carbon Dioxide Emission Reduction Effects 
of All Scenarios

With Eq. (3), total carbon dioxide emissions changes 
can be estimated, and absolute changes of 30 sectors are 
obtained in scenarios. As shown in Fig. 4, T30% has  
the least emissions rise aggregately. Compared with 
emissions in 2012, the first four scenarios have increased by 
75.41%, 57.87%, 40.33%, and 22.79%. Under indifferent 
incentive policies among 30 sectors, emission growth 
ratio decreases 17.54% from T10% to T30%. Compared 
with emissions change in T30%, if only five whole-
process high type sectors were given favorable incentives, 
carbon dioxide emissions will increase by 50%. Similarly, 
18 conductive high-carbon sectors will lead to 1.93 times, 
and two apparent high carbon sectors will bring out 2.29 
times growth. In view of absolute changes, the WH30% 
scenario should be the most satisfying schedule among the 
last three scenarios.

Based on Eq. (12), total carbon dioxide emission 
changes are decomposed into three effects (as shown in 
Table 5 and Fig. 5). In Fig. 5, universal technical progress 
leads to a decrease of 373 million tons, with approximately 
a 12.24% decrease. Special energy-saving technical 
progress leads to 8.78%, 17.55%, and 26.33% declines in 

T10%, T20%, and T30% scenarios. When DCI decreases 
exceed 10%, special technical progress effects are more 
than those resulting from universal technical progress in 
2017. Final demand growth makes a declining positive 
emission effect in four scenarios. In the T30% scenario, 
final demand growth leads to a 61.35% increase of total 
carbon dioxide emissions compared with emissions in 
2012. Final demand growth is always the main factor 
driving carbon dioxide emissions rises in the future. 
However, special energy-saving technical progress shall 
play a more important role in reducing emissions than 
universal technical progress. Based on decomposition 
results of the last three scenarios, they are compared 
with T30% effects. In view of total effects, the WH30% 
scenario has the least and AH30% has the most effects. 
As shown in Fig. 6, the WH30% scenario has the least 
driving effect and the most mitigating effect. It is also the 
best sector to gain favorable incentive policies to stimulate 
carbon dioxide emissions reductions. Conductive high-
carbon sectors should be the second place with their 
relative lower demand effect and fewer reduction effects 
of the three scenarios. 

Fig. 4. Total carbon emission changes in seven scenarios (unit: 
106 tons).

Fig. 5. Total effects and factor effects in NTES and CTES  
(unit: %).

Scenarios
ΔCA ΔCI ΔCY

Quantity
(104 tons)

Ratios
(%)

Quantity
(104 tons)

Ratios
(%)

Quantity
(104 tons)

Ratios
(%)

NTES T0% -373 -12.24 0 0 2667 87.65

CTES

T10% -373 -12.24 -267 -8.78 2400 78.88

T20% -373 -12.24 -534 -17.55 2133 70.12

T30% -373 -12.24 -801 -26.33 1867 61.35

DTES

WH30% -373 -12.24 -630 -20.71 2043 67.15

CH30% -373 -12.24 -132 -4.33 2536 83.35

AH30% -373 -12.24 -5.34 -0.18 2658 87.38

Table 5. Carbon dioxide emission changes and decomposition results in sub-scenarios.
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Conclusions

Based on the environmental input-output model 
and RAS updating method, carbon dioxide emissions 
situations of 30 sectors are evaluated and their reduction 
effects are estimated in 2017 of 13th-FYPiCh in seven 
scenarios. Our main conclusions follow.

Firstly, it will be a long time before China realizes its 
low-carbon economic transformation. Final demands of 
sectors play a dominant role in pushing rising emissions. 
Sectorial demand structure optimization has an important 
effect on carbon economy formation. The economy in 
China grows at the speed of 6~7% and residual living 
standards are growing quickly at the present stage. Final 
demands should grow at high speed for the long term. 
Maybe demand structure optimization, which guides 
residual consumption for low emission products, will polish 
up these emission growth effects. More green products 
and services are supplied to consumers accompanied by 
growing residual living standards, which will promote the 
process of low-carbon economic transformation in China. 
Compared with the reduction effects in seven scenarios, 
technological progress is the core factor for promoting 
declining emissions, whether in carbon dioxide emission 
intensity or in carbon emission quantity. In the short term, 
universal technical progress cuts down emissions through 
production associations among sectors, and in the 13th-
FYPiCh it brings out fewer effects than special energy-
saving technical progress. In the 13th-FYPiCh, supply-
side structural reform is carried out in depth. High energy 
consumption and high emission sectors are facing serious 
transition pressures, such as the iron and steel industry, 
power generation sectors, etc. 

Secondly, technical progress is the key factor for 
promoting low-carbon dioxide emission formation. For 
high emission sectors, how to push forward energy-
saving technical progress is an important subject. On 
one hand, R&D funds in energy-saving and emission 
reduction fields should be invested more during the 13th-
FYPiCh. Compared with these effects, whole-process 
high emission sectors are the most satisfactory types of 

the three. Thus, when carbon dioxide emissions targets  
in China are decomposed into all sectors, whole-process 
type sectors should undertake the most reduction 
commitments, whether in reducing total carbon intensity 
or total carbon emissions. Technological progress has the 
most potential to cut emissions. Especially technological 
advances in energy-saving and emission reduction fields 
shall be the first order to push emissions reduction. On 
the other hand, scientific and technical achievements 
transformation and emission reduction technology 
introduction are also important influential factors. 
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